

第11回 流量計の選び方

(有)計装プラザ 代表取締役 佐 鳥 聡 夫 さ とり とし ぉ

1. 枕と流量計の選び方

あるラジオ番組で「安眠アドバ イザー」なる人が、「半分以上の人 が自分に合わない枕を使っていま す。枕選びは本当は難しいことな のです」と言っていました。

流量計もこれに似て、以前イギリスの専門誌に「流量計の選択が適切か調査したところ、半数以上が最適ではなかった」と書いてありました。枕も流量計も種類が多い上、ひどい間違いがなければ、何とか用が足りるからでしょう。

流量計メーカーに相談すれば、 当然自社製品を薦めますから、それが最適かどうかは運次第。

そこで今回は、どのようにして 流量計を選ぶべきか、基礎的な解 説をします。

2. 流量計選びの手順

流量計を選ぶ手順は、およそ**表1** に示すようになります。

以下、表の順序に従って話を進めます。

表 1 流量計選定順序

1	測定対象の性質把握					
2	測定目的の明確化					
3	流量計形式の絞込み					
4	製品仕様の検討					
5	コスト比較					
6	決 定					

3. 何を測るのか?

まず、何を測るのかはっきりさせなければなりません。液体か気体か、どのくらいの流量かなど、表2に示すような項目です。こんなにたくさん!と驚くかもしれませんが、いつも全項目が必要なわけではありません。表の下の注記をご覧ください。

表 2 測定対象の性質

項目	備考				
流体の種類	液体、気体、蒸気、スラリー				
流 体 名					
密度(比重)	注1				
粘 度	注2				
導 電 率	注3				
色、透明度	注4				
混入物	気泡、異物など				
腐食性	注5				
流量	最大、常用、最小				
脈動の有無	注6				
流体温度	注7				
流体圧力	注8				
許容圧損	注9				

注1:流体名と温度・圧力から計算可能

注2: 気体・蒸気の場合は不要

液体は、流体名と温度が分かれば推定可能

注3:電磁流量計の場合のみ必要

注4:直視型流量計にのみ必要

注5:温度・濃度によって変化することに注意

注6:往復動式ポンプに注意

注7:接液部材質がセラミックの場合は、温度の 急変に弱いので温度変化速度も必要

注8:液体・スラリーの場合は、耐圧チェック用 気体・蒸気では、密度計算にも必要

注9:必要に応じ指定

4. 何のために測るのか?

次に考えるべきことは、測った 結果をどのように使うか、すなわ ち計測の目的です。測定対象と目 的が決まれば、それに適する流量 計の形式はある範囲に絞られ、選 定作業が楽になります。また、必 要な測定精度も目的から決まりま す。測定の対象と目的に適合する 流量計の形式を表3にまとめま す。。

表3中の測定精度で、高精度とは、測定誤差が指示値またはフルスケールの1%以下、中精度とは1%から3%の間、低精度とは3%以上と定義していますが、これは公的な規格ではなく、この場での約束です。

ここで、流量計測の目的と必要な測定精度の関係について考 えてみましょう。

まず、体積流量の監視、警報、制御は、いわば流量計の一般的な使い方です。この場合、表示される流量はいずれも瞬時流量であり、あまり精度を上げても意味がありません。流量の監視に高精度は要らないし、警報設定も2~3%の違いが問題になるようでは危なくて使えません。

瞬時流量は常に細かく変動していて、完全に平滑な制御はできません。無理に制御しようとすれば制御弁を常時動かす必要

表 3 流量計適合表

測定量と測定目的		適用流体		体	特長と制約	
(測定精度)	形 式	液	気	蒸	特 長	制約
		体	体	体		
	差圧式	0	0	0	広い測定対象	狭い流量範囲
体積流量の監視、	電磁式	0	×	×	耐食性、耐磨耗性	要導電性
警報、制御	面積式	0	0	0	構造簡単、ローコスト	垂直取付のみ
(中~低)	超音波式	0	0	Δ	汎用、圧損ゼロ	気泡などの影響
	羽根車式	0	×	×	ローコスト	軸受寿命
質量流量の	熱 式	Δ	0	×	質量流量信号	クリーンガス専用
直接測定(高~中)	コリオリ式	0	Δ	×	質量流量信号	口径範囲、高価格
体積流量の積算	容積式	0	0	×	高精度、高粘度可	軸受寿命、高価格
(高)	渦 式	0	0	0	可動部なし	信号
(IHU)	タービン式	0	0	Δ	高精度	軸受寿命
流速の監視、警報 (低)	ピトー管式	0	0	0	構造簡単、ローコスト	流速分布の影響大

○:適用可 △:制約あり ×:不適

があり、すぐにシール部が磨耗し ます。

質量流量は体積流量から換算して求めることが多く、これを直接 測るのは主に高精度が要求される 場合です。精度が必要なのは積算 流量です。理由は、ガソリンの給 油量、水道の使用量など取引に絡 むことが多いからです。反応タン クへの原料供給なども高精度を必 要とする例でしょう。

5. 製品仕様書の検討

表3に従ってある程度流量計の 形式を絞り込んだら、次にメーカーの製品仕様が、要求されてい る仕様を満足するか否かを検討し ます。仕様書を読む際は、次に挙 げる諸項目にも注意すべきです。

1) 出力信号

出力信号には、電流、電圧、パルス、警報接点などの種類があり、 伝送可能な最大距離も様々です。 パルス信号の場合は、その特性も よく理解する必要があります。

2)電源

起動時に平常時の数倍の電流が 流れる流量計もあります。同一電 源から複数の流量計に供給する場 合は、とくに注意しましょう。

3)設置場所

流量計の前後に直管部が必要な場合は、配管中にそれだけのスペースがとれるか、また重い製品は特別な架台が必要かなど、あらかじめ検討すべきです。

機械的振動の大きい場所や、 モータやトランスのすぐ近くは避 けてください。

製品によっては筐体が屋外設置 に耐えられないもの、あるいは直 射日光を嫌うものもありますから、 これも確認する必要があります。

4)保守作業

定期的な点検を必要とする製品 については、その作業方法も検討 しておきます。後になって、流量 計に近づけない、重過ぎて作業で

著者紹介

佐鳥聡夫

(有)計装プラザ 代表取締役/ 技術士(機械、電気・電子部門) E-mail:satori@ksplz.info

センサとフィールド機器専門のポータルサイト 「計装プラザ」を運営中 URL: http://www.ksplz.info/

TEL/FAX: 03-6809-8622

きないなど、トラブルになっては 困るでしょう。

5)関連製品のチェック

流量計を保護するストレーナ、 流れの乱れを取る整流器、信号変 換器や受信計器など、流量計本体 以外の関連機器についても、その 必要性と仕様を検討します。関連 機器の手配を忘れると、流量計が 届いても使えません。

6. コスト比較

最後に重要なのはコスト比較です。流量計本体の価格だけではなく、TCO(Total Cost of Ownership)を最小にすることが大切です。

TCO = 流量計・関連機器の価格 + 設置費+保守作業費 なので、 全体を見通す目が必要です。

以上述べたように、流量計の選択はかなり面倒な仕事です。迷ったときは、お気軽に「計装プラザ」http://www.ksplz.info/の無料相談窓口をご利用ください。

本稿をお読みくださった方のお 役に立てれば幸いです。